731 research outputs found

    A two-step approach to model precipitation extremes in California based on max-stable and marginal point processes

    Full text link
    In modeling spatial extremes, the dependence structure is classically inferred by assuming that block maxima derive from max-stable processes. Weather stations provide daily records rather than just block maxima. The point process approach for univariate extreme value analysis, which uses more historical data and is preferred by some practitioners, does not adapt easily to the spatial setting. We propose a two-step approach with a composite likelihood that utilizes site-wise daily records in addition to block maxima. The procedure separates the estimation of marginal parameters and dependence parameters into two steps. The first step estimates the marginal parameters with an independence likelihood from the point process approach using daily records. Given the marginal parameter estimates, the second step estimates the dependence parameters with a pairwise likelihood using block maxima. In a simulation study, the two-step approach was found to be more efficient than the pairwise likelihood approach using only block maxima. The method was applied to study the effect of El Ni\~{n}o-Southern Oscillation on extreme precipitation in California with maximum daily winter precipitation from 35 sites over 55 years. Using site-specific generalized extreme value models, the two-step approach led to more sites detected with the El Ni\~{n}o effect, narrower confidence intervals for return levels and tighter confidence regions for risk measures of jointly defined events.Comment: Published at http://dx.doi.org/10.1214/14-AOAS804 in the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    GW25-e4595 Clinical efficacy of pitavastatin in treating hypercholesterolemia combined with chronic heart failure in 24 cases

    Get PDF

    Magnetic Resonance imaging (MRI) in detection of _Bifidobacterium longum_ and _Clostridium novyi-NT_ labeled with superparamagnetic iron oxide (SPIO) nanoparticle

    Get PDF
    *Purpose:* To investigate the MR imaging of _Bifidobacterium longum_ and _Clostridium novyi-NT_ labeling with superparamagnetic iron oxide (SPIO) nanoparticles.

*Materials and methods:* Tubes containing _B. longum_-SPIO, Free-SPIO, _B. longum_ and PYG Medium were incubated under anaerobic condition in _in vitro_ experiment. Transmission electron microscope and Prussian blue staining were used to demonstrate intra-bacteria nanoparticles. R~2~^*^ mapping and R~2~ mapping were reconstructed after MR scanning. _B. longum_-SPIO and _C. novyi_-NT-SPIO were injected respectively _in vivo_ to show whether it might be traced by MR imaging.

*Results:* Magnetosomes in bacteria were observed by electron microscopic and stained by Prussian blue staining. At the same concentration of SPIOs, the R~2~^*^ value of _B. longum_-SPIO was significantly higher than that of Free-SPIO (P<0.001), however, the R~2~ value was lower comparing with Free-SPIO (P<0.001). After injection with _B. longum_-SPIO, they could present in tumor and shorten T~2~^*^.

*Conclusion:* _B. longum_ and _C. novyi_-NT could be labeled by SPIO and then traced by MRI

    Continuous fabrication of calcium sulfate whiskers with adjustable aspect ratio in microdroplets

    Get PDF
    Hemi-hydrate and anhydrous CaSO₄ whiskers with adjustable aspect ratio were continuously synthesized by the reactive crystallization of CaCl₂ to K₂ S₂ O₈ in microdroplets. The effects of solvent and reactive temperature were examined, with SEM and XRD characterizations. Hemi-hydrate and anhydrous CaSO₄ whiskers can be, respectively, obtained in aqueous and N,N-dimethylformamide solutions at 90 °C in 180 s. The addition of ethylene glycol or glycerol as well as increasing temperature could lead to the increase in length and aspect ratio of the whiskers. Thus this preparation technique provides a simple continuous route to synthesize CaSO₄ whiskers with two kinds of crystal structures in a short time, and adjustable lengths and aspect ratios

    Elaboration and characterization of nanoplate structured alpha-Fe2O3 films by Ag3PO4

    Get PDF
    A new strategy for surface treatment of hematite nanoplates for efficient photoelectrochemical (PEC) performances is proposed. Silver orthophosphate (Ag₃PO₄) has been adopted to mediate the formation of α-Fe₂O₃ films. Phosphate ions in Ag₃PO₄ is found to cause a significant morphology change during annealing process, from β-FeOOH nanorod arrays to hematite nanoplates. Meanwhile, Ag ions is doped into α-Fe₂O₃ film. The obtained nanoplate structured Fe₂O₃ –Ag–P films demonstrate much higher photoelectrochemical performance as photoanodes than the bare Fe₂O₃ nanorod thin films. The effects of phosphate and silver ions on the morphology, surface characteristics and the PEC properties of the photoanodes are investigated

    CO preferential oxidation in a novel Au@ZrO₂ flow-through catalytic membrane reactor with high stability and efficiency

    Get PDF
    CO preferential oxidation (CO-PROX) achieves much interest as a strategy to remove trace CO in reformed gases for hydrogen utilization. Herein, we reported a novel Au@ZrO₂ catalytic membrane reactor by embedding gold nano-particles in ZrO₂ hollow fiber membrane for CO-PROX. The flow-through catalytic membrane exhibited high catalytic activity and oxygen selectivity, which gave a turnover frequency of 4.73 s⁻¹ at 60 °C, 2–3 times higher than conventional catalyst pellets. CO conversion of >95% was achieved over the catalytic membrane, which maintained great operational stability during 500-h operation even CO₂ and H₂O were added in the feed stream. The excellent catalytic performance of the flow-through catalytic membrane makes gold catalyst possible for practical application in the removal of CO from hydrogen

    Tuning catalytic selectivity in cascade reactions by light irradiation

    Get PDF
    Selectivity of cascade redox reactions: the reduction of nitrobenzene to azoxybenzene and then to azobenzene and the oxidation of benzyl alcohol to benzaldehyde and then to benzoic acid, is discovered to be tuneable via light irradiation over plasmonic gold photocatalysts. The representative photocatalyst of Au/CeO2 was characterized by TEM, EDX, UV–Vis and XPS to determine its morphology, elemental composition, photo absorptivity and oxidation state of gold. The catalytic test results demonstrate that the net contribution of light irradiation correlates with the ability of incident light to excite electrons and light absorption of catalysts. These findings may inspire peer researchers in developing new photocatalytic processes or in designing new photocatalysts for clean chemicals synthesis
    corecore